


(Received 1 2015, accepted 2016, first published online 1 2016)

~4 5 ~400

 δ^1 ε (*t*) (13 20) (+5.3 %)

/

(),

1. I . c...

& , 200, (... et al. 200,et al. 2012, 2013, *et al.* 2012, *et al.* 2013),

,**1** , *et al.* 200, et al. (200 a).

,

-(,1, et al. 2000 3, , 1 & , 2003, et al. 200, , 2014). & (2011) _ (2014)

(

(ö, &, 2000, , 1 **3**, & et al. 2002, et al. 2004, 200 a) (. 1). et al. 200 a,b, (& , 2012).

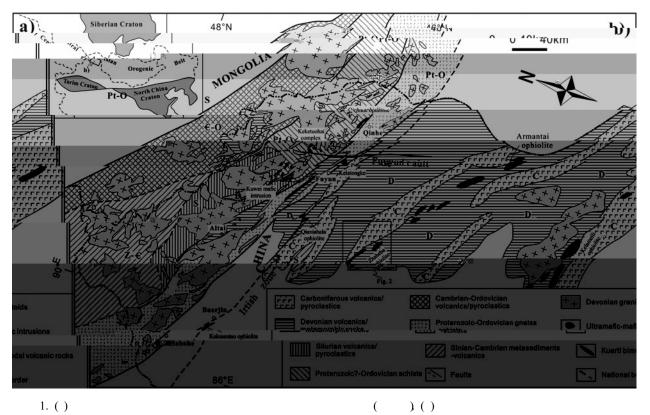
et al. 2003, ,13, et al. 2003, *et al.* 200 a) (. 1).

,

(

),

,


--

16. t

(

(. .

(30 50%)

et al. **200**).

(1) (2)

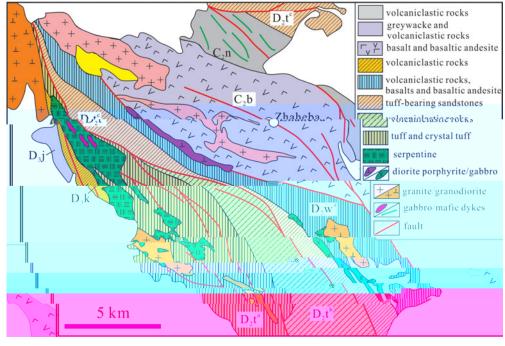
2. R ... a . . b va . . . a

ą ,

1 (**2**).

(.3). 15

(. 2,). 1 5

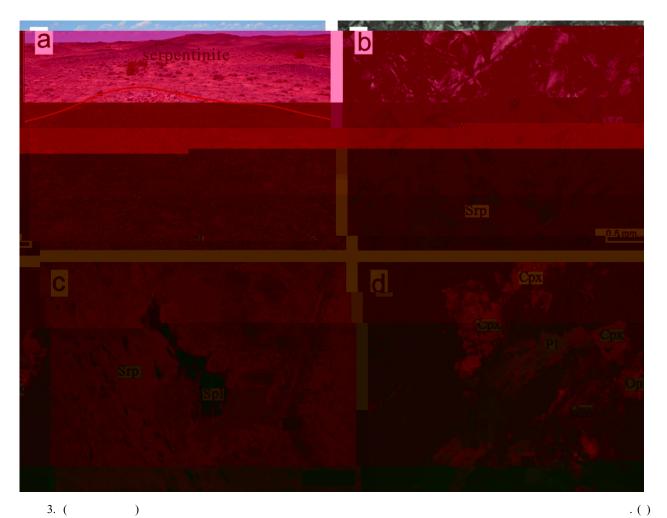

> 0%(.3,). *et al.* 2013).

> (40 0%) (5 10%) (.3).

> > () () ()(*et al.* 2006).

(. 2).

, **1** 3). (



(

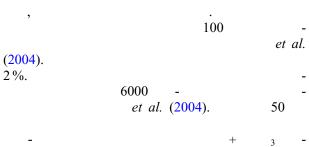
)

et al. 200, 200 a

3.a. Z c. U Pb a. a H 🗣 ... a a

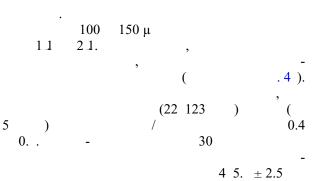
, et al. (2011).

et al. (2010) , 2003). (5% 1 2, 11 12 0 , 1 /16 *et al.* (2010*a*). 1^{1} /¹⁶ = 0.0020052), (() δ¹ 5.31 ‰ (*et al.* **2010***b*). $\delta^1 = 5.44 \pm 0.21 \,\% \,(2),$ $5.4\pm0.2\,\%$


(et al. 2013). 1/ . . / .

3.b. M. aaa

20 . -4 5 1/ . . / .


3.c. W, -, c, a, a

- - -

1. , + 3 , - . -) , . *et al.* (2004). /⁶

4. A a ca 4.a. Z c U Pb a

3. A a ca c

1.			,							
	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
	2 0	4.20	2 41	2 (2	Major elements 3 .22	· (%)	2 05	4.22	46.4	51.2
2	$\begin{array}{c}3&.&0\\0.05\end{array}$	4 .20 0.20	$3 .41 \\ 0.05$	3 .62 0.05	3.22 0.04	3.2 0.05	3 .05 0.04	4 .22 0.14	40.4 0.12	0.2
2 2 3	0.61	1. 6	1.04	0.6	0. 0	0.05	0. 0	1.2	1.64	1.33
2 3	.44	4.6		.36	.5	.16	. 4	3.6	3.24	3.
	0.0	0.10	0.11	0.11	0.11	0.0	0.11	0.0	0.0	0.0
	3.21	24.5	3.2	3.	3.0	3.31	3.44	10.04	.03	5.
1 421	10.0									

	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.34	0.044	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
	0.004	0.04	0.00	0.00	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
	$\begin{array}{ccc} 0.0 & 0 \\ 0.26 \end{array}$	$0.036 \\ 1. 10$	$\begin{array}{c} 0.03 \\ 6.600 \end{array}$	$\begin{array}{c} 0.03\\ 1. 0 \end{array}$	0.06 0. 3	0.026 0.233	0.025 1.150	$0.046 \\ 1.5 0$	0.031 0.516	$\begin{array}{c} 0.06\\ 0.1 \end{array}$
	0.20	0.0 2	0.12	0.112	0.0	0.235	0.054	0.16	0.1 1	0.6 5
	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
	2013 01 5	2013 01 6	2013 01	2013 01	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
			(1)	(1)	(1) Major elements	(1)	(1)	(1)	(1)	(2)
	4.1	45.	4.	53.1	51. 1	50.40	50.54	50.52	51.22	52.3
² 2	0.34	0.15	1.40	1.24	1.31	1. 0	1.63	1.31	1.1	0.33
2 3	1.	1.5	16.5	16.1	15. 3	15.	16. 6	15.55	15.4	1 .61
2 3	4.52	3.34		.11	.43	.0	.50	.42	. 2	3.44
2 2	0.0	0.0	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.0
	6.	.42	4. 0	4.2	4.41	5.	3.2	6.06	.14	4.
	11.03	12.61	6.22	5.5	6.3	6.5	4.52	.4	.26	. 0
2	4. 6	.3	. 2	.3	.00	4.52	.31	4. 0	4.0	.11
$\frac{2}{2}$ 5	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.2	2.03	0.1
25	0.04	0.02	0.62	0.62	0.65	0.4	0.6	0.4	0.44	0.04
	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1. 3	2.
		. 2 .4	. 6 .11	. 0 . 0	.4 .42	.40 6.56	. 1 .64	.6 6.0	.6 6.11	. 1 .2
#	4. 5	.4	55	. 0 54	.42 54	56	41	56	64	.2 4
π	5	1	55	Ът	Trace elements (p		71	50	04	-
	.0	4.5	1.16	1.12	1.4	.0	40.4	5.2	6. 2	5.1
	0.22	0.135	1.2 4	1.6 3	1.316	1. 53	1.034	1.100	0.5 5	0.62
	25.0	23.	1.6	1.5	1.5	.5	1.2	25.2	1.	1.0
	11	3.	1 6	166	1 2	22	22	254	1	5.
	34.	163	60.5	62.6	64.1	116	1.	0.	203	23.
	24.2	21.6	26.	23.6	24.6	2.	2.5	2 .0	2 .0	16.4
	4.	15	63.6	50.	51.4	6.	2.	5.3	132	1.1

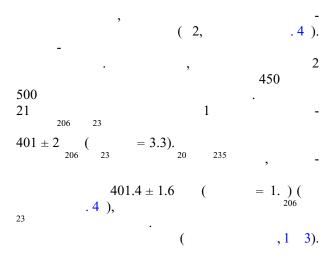
	2013	01 5	2013	01 6	2013	01	2013	01	2013	01	2013	03 2	2013	03 3	2013	03 4	2013	03 5	2013	01 3
					((1)		(1)	(1)	(1)	((1)	(1)	(1)	(2)
	3.		1.	.20	3	.60	46	5.0	4	.30	23	.40	43	00.	25	.20	32	. 0	6.	.56
23.40 .1		.1	2	23.40 6.54	0.1		25.20	.1	605 5	i ()-250									

1.

2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 1
(2)	(2)	(2)	(_1)	(1)	(2)	(1)	(1)	(1)	(1)
	24	10.1	Trace elem	ents (ppm)		,	,	,	,
1.4	36.	42.4	26.0	32.4	1.	/	/	/	/
0.3 5	0.153	0.35	1.1	0.4	0.46	12.4	20 5	./	/
32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1.	20.3
1 4	203	21	33	341	1 5	144	1 4	214	265
56.5	44.2	4.	1.	22.2	53.	15	162	214	265
34.	3 .5	3.3	23.1	24.	33.	20.6	30.	2 .	20.2
66.4	4.6	6.4	25.4	2.1	66.6	.1	114	5.5	.02
6.4	236.4	256.	205.4	20.	114.20	/	/	/	/
4.0	44.1	4.0	4.	103	44.1	/	/	/	/
12.0	11.1	11.2	14.	13.6	12.0	/	/	/	/
0.5	1.420	1.0 0	3.130	3.2 0	0.5 3	4.	1 .1	22.0	1.2
1	1 50	5	2 0	24	6 6	l	31	111	6
13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.	20.1
54.	42.3	41.5	144	154	52.	243	133	164	151
1.2	0. 4	0. 55	11.315	11. 5	1.25	20.2	12.	21.	12.2
0.025	0.030	0.02	0.051	0.052	0.02	/	/	/	/
0.3 1	0.2 6	0.32	1.560	1.450	0.360	/	/	/	/
0.2	1. 20	1.030	0.365	0.406	0.336	/	/	/	/
11	3 2	346	25	50	4.3	/	/	/	/
10. 0	. 40	.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
23.00	1.0	1 .40	51.50	54. 0	22.30	5.	62.	2.3	52.5
2. 0	2.520	2.510	5. 50	6.1 0	2.6 0	6.	. 4	10.5	6.4
11. 0	11. 0	11.60	22.30	24.30	11.60	2 .5	31.2	43.1	24.4
2.540	2. 00	2.6 0	4.4 0	4. 00	2.3 0	4.5	5.2	6.	4.5
0. 6	0. 1	0. 0	1.163	1.25	0. 3	1.45	1.5	2.0	1.03
2.4 0	2. 13	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
0.3 6	0.3	0.3	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
2.1 0	2.150	2.220	3.420	3.6_0	2.130	2.5	2.	3.24	3. 5
0.46	0.446	0.444	0. 2	0.5	0.46	0.4	0.52	0.5	0.
1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
0.1 0	0.16	0.1 5	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
0.0 4	0.062	0.051	0.5	0.644	0.0	1.35	0.6	1.16	0.6
0.151	2.0	1.50	2. 5	1.	0.33	/	/	/	21.05
0.3 4	0.206	0.200	45.20	35.10	0.41	.13	.0	4.1	21.06
1. 0	0. 61	0. 1	. 60	.2 0	1. 0	4.50	2.63	3.20	.41
0.500	0.304	0.302	2. 30	3.4 0	0.501	1.	0.6	1.46	2.5

04 06, 04 26, 04 2 04 1

, / . et al. (200 a).

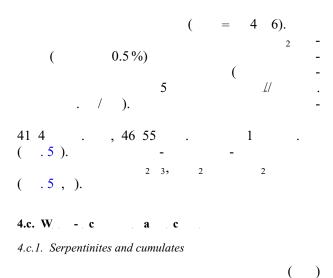

. .

2.																			
				()	()	6	6	/ (1σ)	(_6)	()	(4 / 144	143 144	/ (1σ)	(¹⁴³ 144		ε (t)
2013 2013 2013 2013 2013 2013 2013	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2) 2) 1) 1) 1) 1)	0.36 0.5 3.13 2. .06 .65	3 2 6 6 2 0 1320 516 14 0	0.002 0.0024 0.0335 0.0063 0.0452 0.01	0. 04 0. 06 0. 04 0. 05	4030(2) 4 5 (23) 5324(20) 42 (20) 536 (43) 422 (51)	0. 0 0. 0 0. 0	4 45 5133 4255 5111	2.4 2.3 4.4 4.5 5. 4.55	10. 11. 22. 2 . 36. 24.	6 (0 3 (0 6 (0 0).13 4).1235).121).1046).0).1123	0.512 0.5125 0.512	533(4) 1 (51) 0 (30)	0.5124 0.5124 0.5122 0.5124 0.5124 0.5124 0.5125	6 14 45 50	6. .1 1. 6.3 6.4 .5
ϵ (<i>t</i>) =	10 000((¹⁴³	/144) (40	$t)/(^{143}$ 1 .	/144)	(<i>t</i>)-	-1) ε	(<i>t</i>) (/ 6)									
		$^{206} Pb/^{238} U$	0.1 0.0 0.0	10 — 08 — - 06 —	a)	Ioom Contraction Contraction			1										
			0.	10	2007 Att			20	⁷ Pb		J	0 (ÿ						
			0.0	F	=401.	ept Ag 4+1.6 D=1.8	e	400-	5	00	60	0	ſ						
		\mathbf{U}^{238}	0.0)6 –				400	Jeo	~		2							
		²⁰⁶ Pb/ ²³⁸ U	0.0	04 -	20	Rejected		⁷ Pb/ ²⁰⁶ Pb	.10-		-								
			0.0	02	\mathcal{O}_1	00			.04	1	1	06 40	1	98_394	390				
		Ш	0	.00 0.0	0	0.2	~	0.4	²⁰⁷ P	15.0 0.6 b / ²³			.8		16.0				
4	l. () 1σ					2σ ()											
(. 4	, = 2	,		= 3	3.1). 4	± 4		-		/ , 1	(1)		1	3.			0%	/	-

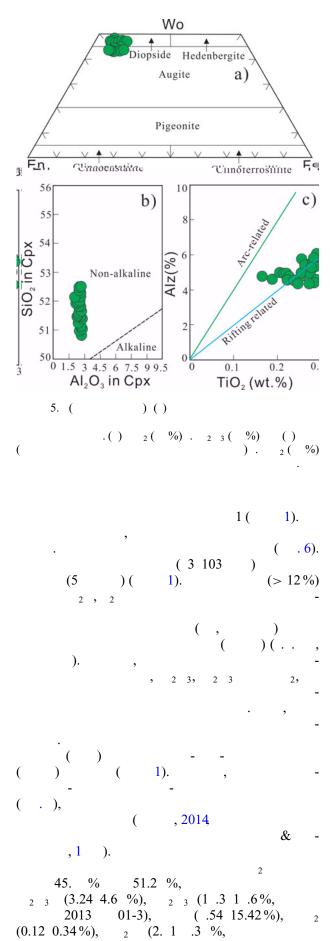
(et al. 2003). $, 100 200 \mu$. (2)

42

, -



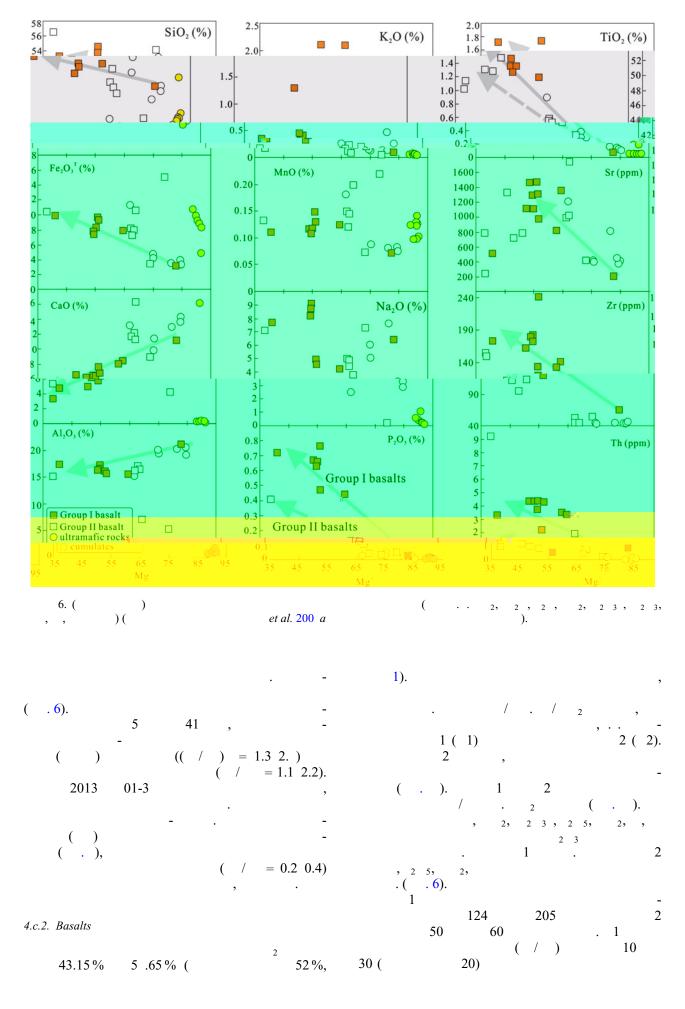
4.b. M. a c

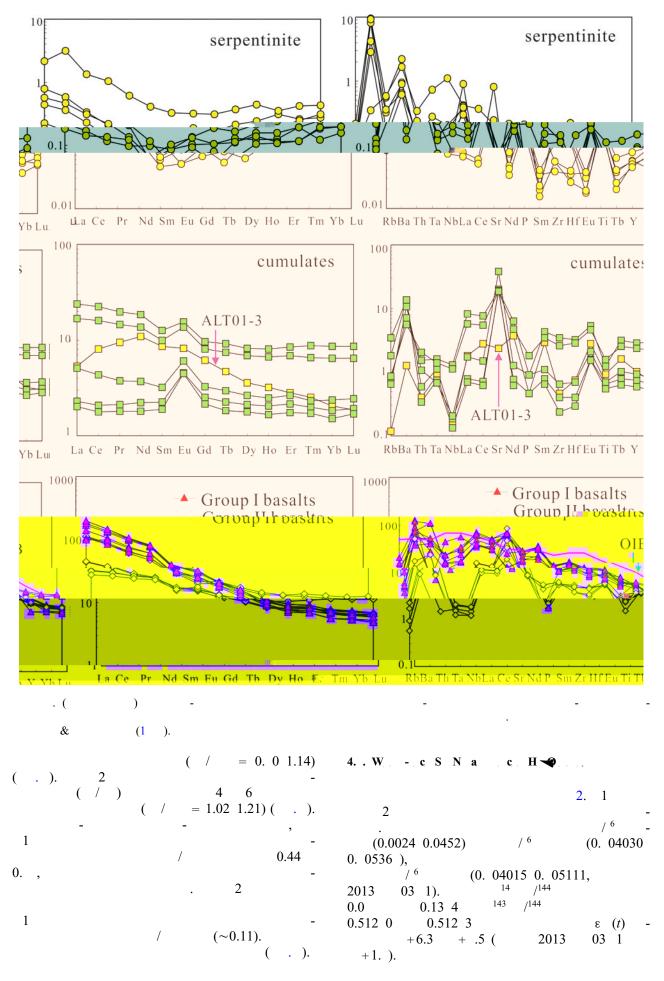

4.b.1. Spinel composition

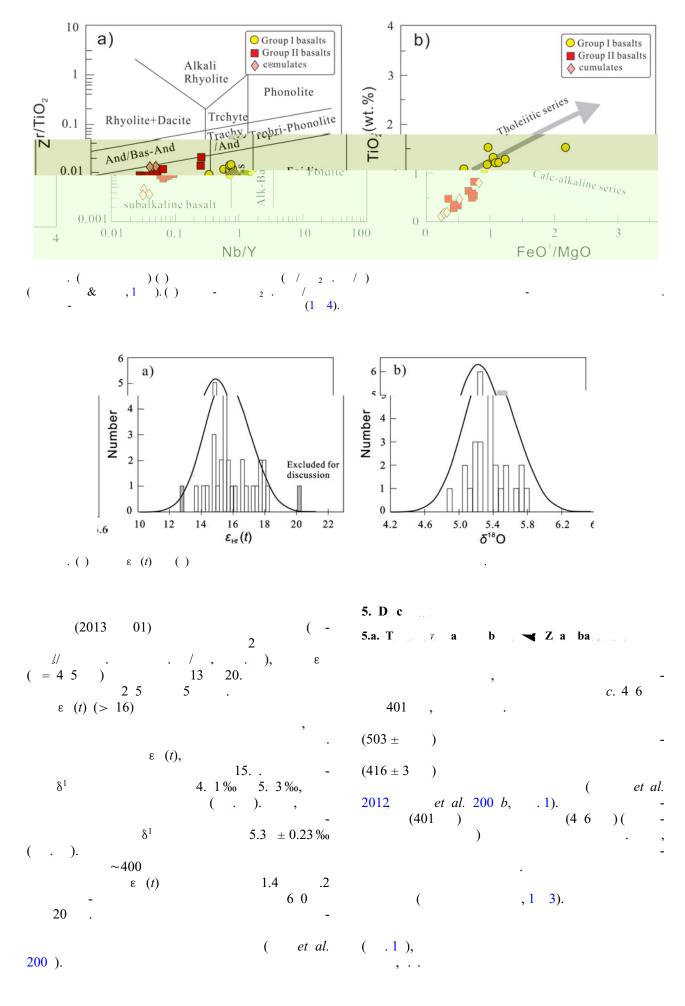
(*et al.* 2013).

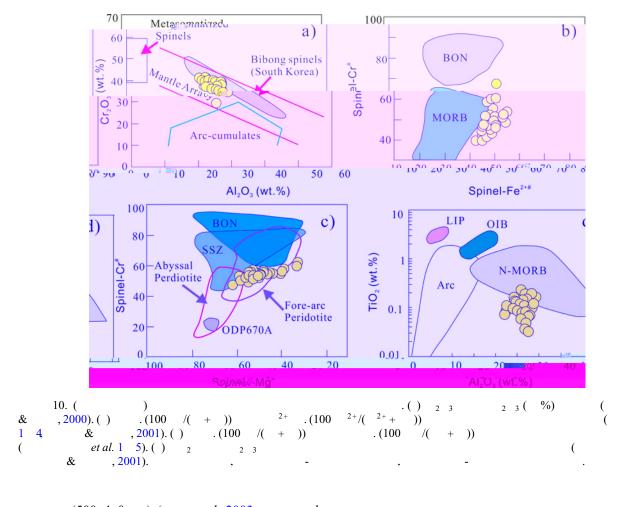
4.b.2. Pyroxene compositions

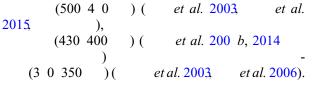
(> 12%, (> 12%, (10%), 2 (0.03, 0.06%), 2 (0.04, 0.05%), 2 (0.05%), 2 (0.05%), 2 (0.04, 0.05%), 2 (0.05%), 2

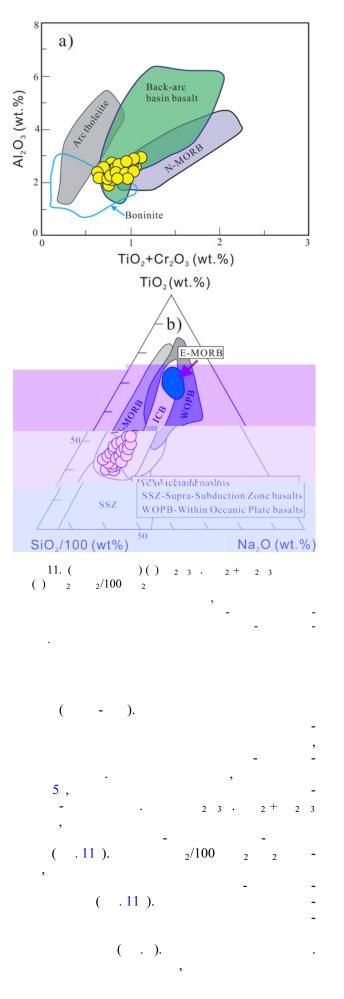

2 (0.11 0.46%)

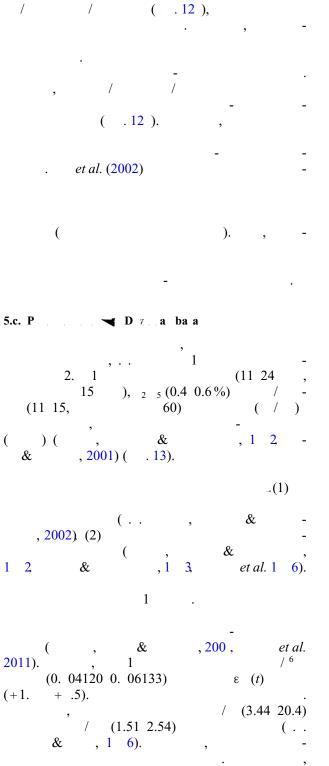

_


1).


(


2013 01-3)





5.b. O a c a

(, & , 2002, et al. 2010

1

, **1 6**).

, 1 2

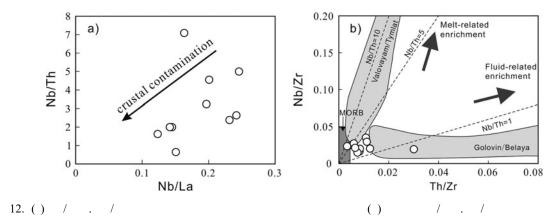
1 6

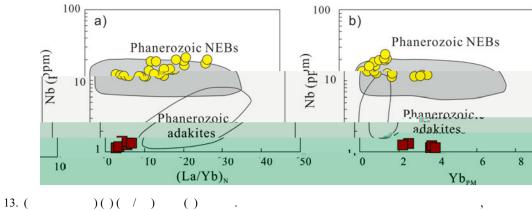
2000).

& (200) (

&

(


et al. 1 6).


et al.

_

,

et al.

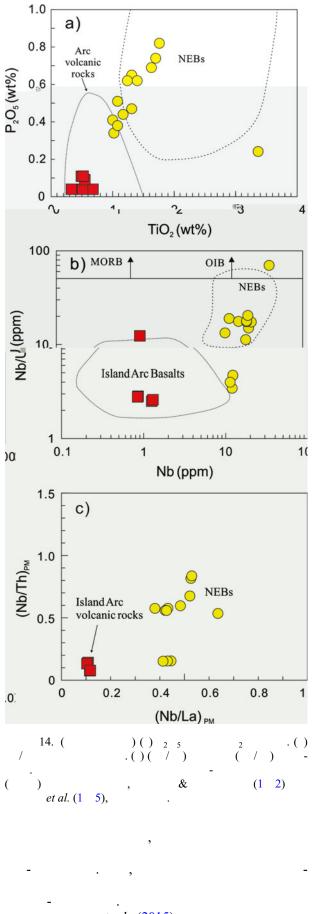
()).

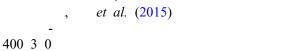
1

& , 2002). 1 1, (/) (0. 1.0), (/) 2

(0.6 1.0) 2 (0.1 0.2) 1 & , 1 <u>6</u>). (2 1 2 5 (1, . 14). (.14). 2

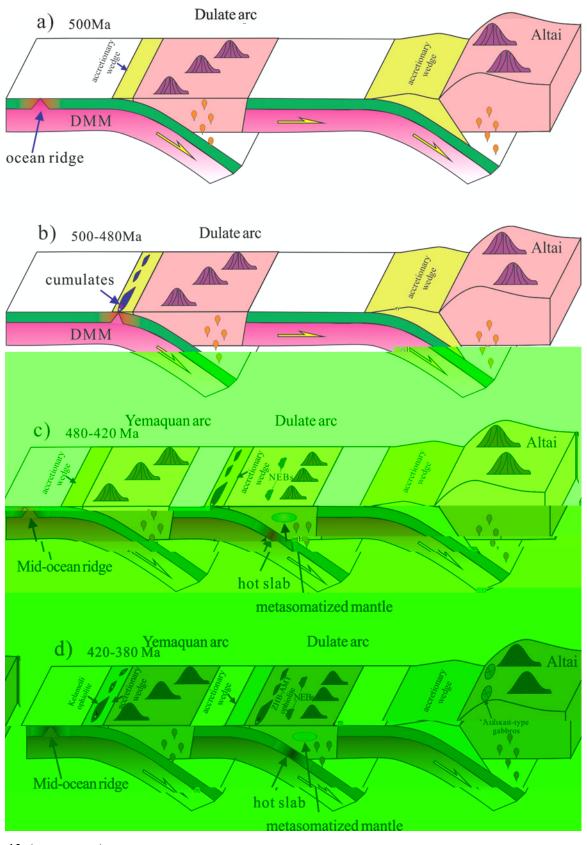
1

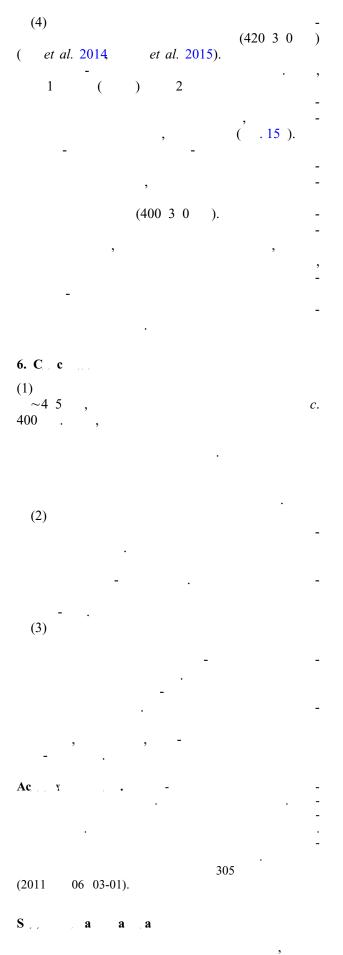

5. . I _ _ _ ca Pa a J a a


et al. 2014, (416 , et al. 2015), (503 4 5 et al. 2003, *et al.* 2015, •))(.1). (400

et al. 2014), (

et al. 200, 200 a,b, (et al. 200 a).


et al. 200 b). (



460 3 5 et al. 2006, 200, et al. 200 et al. 200, 200, e 2015).	c. 400 0, et a et al. 2012,	al. 200,
, -		-
2002, <i>et al.</i> 200).	(& , -
(<i>et al.</i> 2015). (5.), -	-2
		-
(1 ['] , 15). <i>et al.</i> ((200 , 200 <i>l</i>	-)) -
	,	-
	-	-
	(et a	<i>l</i> . 200).
& ,200, <i>e</i>		, -
(1) (<i>c</i> .	(. 500),	15). -
	,	-
(.15). ,		
-		
(2) (500 4 0),		
(. 15). ,		-
(3) 420), - (2015) -	(45 ,	(4 0 <i>et al.</i>
(440 , <i>et al.</i> 2014)		-
(_	-

(.15). , -

15. ()

// . . /10.101 / 0016 56 16000042.

R 🔫 c

, . 1 4.

. Chemical Geology **113**, 1 1 204. , . . & , . . 2001. Journal of Petrology **42**, 22 302. , . ., , . . & , . . 200 . . Lithos **97**, 2 1 . , . ., , . . & , . . 200.

,

, . ., , , . . & , . . 1 2. . Journal of Geological Society, London 149, 56 . , . . . & , . 1 4. . Contributions to Mineralogy and Petrology 86, 54 6. , . & , . . . 2003. -(2)-, , . . Ophiolites in Earth History (. & . .), . . 43 6.

21 . , . & , . 2011. ب . Geological Society of America *Bulletin* **123**, 3 411. · · · , · · · , · · · , · · · , · · · , · · . 2015. ٠, . Chinese Journal of Geology 50, 140 54 (). , . & , . 2000. (-/)_ . Contributions to Mineralogy and Petrology 140, 2 3 5. , . .& , .1 1. , .,

. Lithos **27**, 25

, . .

. Geology

, . ., , . ., , . & , . . 2011. Geological Bulletin of China 30, 150 13 (). , . . 2011. & ? Geochimica et Cosmochimica Acta **75**, 504 2. ,.., ,...& . . 2001.)_ . Chemical Geology 182, 22 35. , . . & , ... 1 6. . Journal of Geophysical Research: Solid Earth (1978–2012) 101, 11 31 . , . & , . 2000. _ 2. . Contributions to Mineralogy and Petrology **139**, 20 26. , . & , . 2012. , . , . ., , . ., . Geological Bulletin of China **31**, 126 (). ., , . ., , . ., , . & , . .2014.). Chinese Science Bulletin (Chinese Ver-(sion) 59, 2213 22. , . ., , . . & , . 2000. . Transactions of the Royal Society of Edinburgh: Earth Sciences **91**, 1 1 3. , . . & , . . 1 0. . Journal of Petrology **31**, 6 1. ., , • •, . Earth Science Frontier 10, 43 56 (). , . . & , . 2001. , . ., ~ , -. Journal of Petrology 42, 655 1. , .16. *Nature* **380**, 23 40. ., , . & , ., ., ., ., ., . Tectonophysics 326, 255 6. . ., , . ., , . ., , . ., , . & . . 2010*a*. 50

. Lithos 114, 1 15.

. . . & , . 2004. . Geological Magazine 141, 225 31. . ., . 2010*b*. . & . Geostandards and Geoanalytical Research **34**, 11 34. • •, •, • •, , . ., , .& , . .2013. . Chinese Science Bulletin 58, 464 54. , . **&** , . 200 . . Lithos **113**, 2 4 1. · ·, , · ·, , ·, , . & , . . 2010. - - . Chinese Science Bulletin 55, 1535 46. , . . 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. -3. **,** ., , . ., **,** ., , . . 2015. (Gondwana Research, 10.1016/ . .2015.04.004. 6 2015. , .1 4. . American Journal of Science **274**, 32 355. , ., -, .& , .1 5. , ., -). Geology **23**, 51 4. , . 1 . Structure of Ophiolites and Dynamics (of Oceanic Lithosphere. , 36 , . .1 . Journal of Petrology **38**, 104 4. , .& . Acta Petrologica Sinica 25, 16 24 (). & , . . 200 b. Acta Petrologica Sinica 25, 14 4 1 (). , ., , . . & , . . 200 . 40 ',3" . Acta Petrologica Sinica 23, 162 34 (). , ., , . & . ., . 2002. Proceedings of the Ocean Drilling Program, Sci-16 entific Results, vol. 176 (. . , . . . , . . & . .), . 1 60. -,

4,

, . ., , . & , . . 200 . , . ., *. Chinese Science Bulletin* **14**, 21 6 1. , . ., , ., , . . & , . . 2010. *. Lithos* **117**, 1 20 . , . & , . 200 . • •• . Journal of Asian Earth *Sciences* **30**, 666 5. , . . 200 . . Lithos 100, 14 4 . , . .2014. . Elements **10**, 101 . , . & , . 2001. , 2. , -. Contribution to Mineralogy and Petrology 141, 36 52. , ., , , ., , .& . 2013. (). , Gondwana Research 24, 3 2 411. , . & , ., , .1 6. (). Journal of Petrology **37**, 6 3 26. , ., , ., , .& , . . 2013. . Precambrian Research 231, 301 24. . & . Precambrian Research 192 195, 1 0 20 . , . ., , . .& , .1 1. -. Philosophical Transactions of the Royal Society of London **335**, 3 2. , ., ., ., ., , . .1 5. , . .& . Nature **377**, 5 5 600. , . . & , . . 1 3. . . ., . Nature **364**, 2 30. , ., , .& (~440) . 2014. -().-. Lithos 206 207, 234 51. . . 2002. . Reviews of Geophysics 40, 3-1 3-3 .

200 .

Sciences 52, 1345 5. , . . & , . . 1 Magmatism in . . the Ocean Basin (& . .), .52 4. . 42. , ., , .& , .200 . . Chemical Geology **247**, 352 3. ., , , , , . ., , . ., , . .& , . .200. . Acta Petrologica Sinica 23,). , . ., , , . . & 1 33 44 (,..., ..1.. . Contributions to Mineralogy and Petrology 133, 1 11. ., , . ., , . ., , ., , . . & , . . 2006. , , . ., , . Journal of *Geology* **114**, 35 51. , ., , . ., . & , . .200 . , . ., , ., , . . Lithos 110, 35 2. , . . 2012. , . . & . Earth-Science Reviews 113, 303 41. ,..&,..l. . Chemical *Geology* **20**, 325 43. ., , ., , ., , .& . Journal of Geology 110, 1 3. , ., , . ., , . ., , . . & , . . 2006. . Geology in China . Geology in China). 33,466(· · ·, · · ·, · ·, ·, ·, , . ., 2014. ()⁹ Geoscience Frontiers **5**, 525 36. , . ., , . . & , . 200 . . Journal of Asian Earth Sciences **32**, 102 1 . , . ., , . ., , . . & , . . 2013. Gondwana Research 23, 1316 41. , . ., . Journal of

. Science in China Series D – Earth

,, ,, ,, ,,
, ., ,, , ., , .& , 200 a
,
<i>International Journal of Earth Sciences</i> 98 , 11 21.
,, ,, , ., , .
., ,, ,, ,, ,, ,, ,, ,, .
. American
Journal of Sciences 309 , 221 0.
, .1 3. Regional Geology of the Xinjiang
Uygur Autonomous Region
, .2 145 ().
,, ,, ,, ,
, 20101

113,	5			• •	Jourr	ıal o	f Asi	an .	Eari	th Sc	iences		Ε
••,	,	., ,	•,	, ,.20	., , 012.	.,	,	•	•	·,	, . &		

م

. Gondwana Research 21, 246 65.

Chaminal Carlow 242, 22, 2
<i>Chemical Geology</i> 242 , 22 3 . , , , , , , ,& , . 2006.
, ., ,, ,, ,& , .2006.
, ()-
Acta Geologica Sinica 80 , 254 63 (-
,, ,, ,, ,, , & , .2003.
Chinese Science Bulletin 48, 2231 5.
,, , , , , ,& , 2013.
, ,
. <i>Lithos</i> 179 , 263 4.
,, ,& ,2012.
. Journal of Asian
Earth Sciences 52 , 11 33.
,, ,, , ., , & , 200.
gica Sinica 24, 1054 5 (
). , . & , 1 6. Annual Review of Earth and Planetary Sciences 14,
4 3 5 1.